Publications

Applied Filters: First Letter Of Last Name: E Reset
2 Publications

E

Eppinger, B., Nystrom, L. E., & Cohen, J. D. (2012). Reduced Sensitivity to Immediate Reward during Decision-Making in Older than Younger Adults. PLoS ONE, 7, e36953. https://doi.org/10.1371/journal.pone.0036953
We examined whether older adults differ from younger adults in the degree to which they favor immediate over delayed rewards during decision-making. To examine the neural correlates of age-related differences in delay discounting we acquired functional MR images while participants made decisions between smaller but sooner and larger but later monetary rewards. The behavioral results show age-related reductions in delay discounting. Less impulsive decision-making in older adults was associated with lower ventral striatal activations to immediate reward. Furthermore, older adults showed an overall higher percentage of delayed choices and reduced activity in the dorsal striatum than younger adults. This points to a reduced reward sensitivity of the dorsal striatum in older adults. Taken together, our findings indicate that less impulsive decision-making in older adults is due to a reduced sensitivity of striatal areas to reward. These age-related changes in reward sensitivity may result from transformations in dopaminergic neuromodulation with age.
Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced Striatal Responses to Reward Prediction Errors in Older Compared with Younger Adults. The Journal of Neuroscience, 33, 9905–9912. https://doi.org/10.1523/jneurosci.2942-12.2013
We examined whether older adults differ from younger adults in how they learn from rewarding and aversive outcomes. Human participants were asked to either learn to choose actions that lead to monetary reward or learn to avoid actions that lead to monetary losses. To examine age differences in the neurophysiological mechanisms of learning, we applied a combination of computational modeling and fMRI. Behavioral results showed age-related impairments in learning from reward but not in learning from monetary losses. Consistent with these results, we observed age-related reductions in BOLD activity during learning from reward in the ventromedial PFC. Furthermore, the model-based fMRI analysis revealed a reduced responsivity of the ventral striatum to reward prediction errors during learning in older than younger adults. This age-related reduction in striatal sensitivity to reward prediction errors may result from a decline in phasic dopaminergic learning signals in the elderly.